# Dynamic Causal Modeling (DCM): Theory & Application

Shamil Hadi Computer Science and Engineering Oakland University



#### SPIE Conference (2012)

We have received an Honorable Mention Poster Award

480 posters Winning poster rate: 5/480 is 1%





#### SPIE Conference (2012)

SPIE

#### ·····

Biomedical Applications in Molecular, Structural, and Functional Imaging Conference 8317

#### Honorable Mention Poster Award

Comparison between subjects with long- and short-allele carriers in the BOLD signal within amygdala during emotional tasks (8317-61)

Shamil M. Hadi, Mohamad R. Siadat, Oakland Univ. (United States); Abbas Babajani-Feremi, Henry Ford Hospital (United States); Barbara Oakley, Oakland Univ. (United States)

Presented by:

Robert C. Molthen, Zablocki VA Medical Ctr. (USA), and John B. Weaver, Dartmouth Hitchcock Medical Ctr. (USA)

#### 6380

Medical Imaging 2012 Monday, 6 February 2012

SPIE

Medical





#### Outline





#### Introduction $\rightarrow$ Functional integration

#### Functional connectivity vs. Effective connectivity





- 1. Analysis of regionally specific effect.
- 2. Correlation between activity in spatially remote region.
- 3. Independent of how the. dependencies are caused.

- 1. Interactions among brain regions.
- 2. One brain area is influenced by another.
- 3. Requires a generative model of measured brain responses.



#### Outline





#### Objective

- 1. Determination of facial expression of emotional task is associated with changes in brain connectivity and thus allowed comparison between s allele and  $\ell/\ell$  allele.
- 2. To see whether these effects were modulated by emotional stimuli.
- 3. To show that genotype affects patterns of neuronal activation within limbic circuitry.

# Why individuals with 5-HTTLPR short-allele are more prone to anxiety?



#### Outline





#### Related work → Hemodynamic Model



http://www.fil.ion.ucl.ac.uk/spm/doc/papers/Stephan NeuroImage 38 387 2007.pdf



#### Related work → fMRI













#### Outline





#### Approach → Dynamic Causal Modeling (DCM)

 Dynamic Causal Modelling is a framework for fitting differential equation models of neuronal activity to brain imaging data using Bayesian inference (W. Penny *et al*, 2010).

• The general idea is to estimate the parameters of a reasonably realistic neuronal model.



#### Approach → Model Space





#### Approach → Conceptual overview





#### Approach → Bilinear state equations





#### Approach $\rightarrow$ Neurodynamics : 2 nodes + u<sub>1</sub>





$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = s \begin{bmatrix} -1 & 0 \\ a_{21} & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} c \\ 0 \end{bmatrix} u_1 \qquad a_{21} > 0$$

activity in  $z_2$  is coupled to  $z_1$  via coefficient  $a_{21}$ 







### Approach → Reciprocal connections





reciprocal connection disclosed by u<sub>2</sub>

$$\begin{bmatrix} \dot{z}_1 \\ \dot{z}_2 \end{bmatrix} = s \begin{bmatrix} -1 & a_{12} \\ a_{21} & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + u_2 \begin{bmatrix} 0 & 0 \\ b_{21}^2 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} + \begin{bmatrix} c \\ 0 \end{bmatrix} u_1$$

 $a_{12}, a_{21}, b_{21}^2 > 0$ 



#### Approach → Hemodynamic responses





#### Approach → DCM drawback

- 1-Needs certain special knowledge.
- 2- Time consuming.
- 3- Complicated.



#### Approach $\rightarrow$ The DCM cycle





#### Outline





#### Dynamic system → Linear model





#### Dynamic system → Bilinear model





#### Dynamic system → Nonlinear model





#### Outline







#### Experiment → Subjects

- 37 Caucasian subjects, 15 for long-allele and 22 for short-allele carriers.
- Subjects were selected from a large population after testing to make sure there was no history of neurological illness, any drug or alcohol abuse.





#### 2- Long promoter region, $\ell/\ell$ -allele

Promoter region

Translator region



## Experiment → Subjects





### Experiment → Region of interest

- 1. Left amygdala (L).
- 2. Right amygdala (R).

- 3. Rostral Subgenual Posterior Portion of the Anterior Cingular Cortex (r).
- 4. Caudal Supragenual Portion of the Anterior Cingular Cortex (c).



#### Experiment → Region of interest



Fig. 3. Brain region locations. a) axial, b) coronal, and c) sagittal

| Table 1, Voxel | Brain region       | Number of<br>Voxel | X   | Ζ  |     |
|----------------|--------------------|--------------------|-----|----|-----|
| statistics     | Left amygdala (L)  | 11                 | -26 | -4 | -25 |
|                | Right amygdala (R) | 13                 | 22  | 0  | -25 |
|                | cACC (c)           | 14                 | -4  | 38 | 21  |
|                | rACC (r)           | 11                 | 4   | 41 | -5  |



#### Experiment $\rightarrow$ Identify the models





## Experiment → Inputs





## Experiment → Paradigms

| LM   | ML   | MM   |  |  |  |
|------|------|------|--|--|--|
| • MS | • MS | • MS |  |  |  |
| • LF | • MF | • MF |  |  |  |
| • MS | • MS | • MS |  |  |  |
| • LF | • MF | • MF |  |  |  |
| • MS | • MS | • MS |  |  |  |
| • MF | • LF | • MF |  |  |  |
| • MS | • MS | • MS |  |  |  |
| • MF | • LF | • MF |  |  |  |
| • MS | • MS | • MS |  |  |  |
|      |      |      |  |  |  |
|      |      |      |  |  |  |



## Experiment → Paradigms





#### Experiment → Results (Input is MF)





#### Experiment → Results (Input is MF)





#### Experiment → Results (Modulatory input)



Model 5

Model 6

Model 7

Model 8



#### Experiment → Results (Winning model)



Fixed-effect model inference. Log-evidence and posterior probability for 8 models. a) long-allele individuals. b) short-allele individuals.



Random-effect model inference. Expected probability and exceedance probability for 8 models. c) long-allele individuals. d) short-allele individuals.



#### Experiment → Results (Winning model)



Model 1

Model 7



#### Experiment → Results (Winning model)

| Endogenous        | Minimum |         | Maximum |        | Mean    |         | SD     |        | <i>KS*</i> test  | t test     |
|-------------------|---------|---------|---------|--------|---------|---------|--------|--------|------------------|------------|
| parameters        | Long    | Short   | Long    | Short  | Long    | Short   | Long   | Short  | <i>p</i> -value~ | p-value†,^ |
| $c \rightarrow r$ | -0.0692 | -0.0832 | 0.2845  | 0.1041 | 0.0252  | 0.0215  | 0.0926 | 0.0518 | 0.2463           | 0.3161     |
| $c \rightarrow R$ | -0.1607 | -0.1097 | 0.7273  | 0.5554 | 0.0911  | 0.1092  | 0.2240 | 0.1844 | 0.1249           | 0.4946     |
| $c \rightarrow L$ | -0.0454 | -0.3084 | 0.2348  | 0.3315 | 0.0427  | 0.0208  | 0.0759 | 0.1411 | 0.3404           | 0.3333     |
| $r \rightarrow c$ | -0.3102 | -0.5189 | 0.2091  | 0.6849 | -0.0018 | 0.1002  | 0.1406 | 0.2806 | 0.1822           | 0.8039     |
| $r \rightarrow R$ | -0.1236 | -0.1769 | 0.1808  | 0.2532 | 0.0379  | 0.0529  | 0.0874 | 0.0919 | 0.8862           | 0.7480     |
| $r \rightarrow L$ | -0.2824 | -0.4271 | 0.6339  | 0.7046 | 0.0940  | -0.0398 | 0.2527 | 0.2822 | 0.4380           | 0.5057     |
| $R \rightarrow c$ | -0.3252 | -0.4355 | 0.4170  | 0.4539 | 0.0694  | -0.0049 | 0.2331 | 0.2768 | 0.5687           | 0.7275     |
| $R \rightarrow r$ | -0.0783 | -0.1333 | 0.3976  | 0.3180 | 0.0705  | 0.0669  | 0.1232 | 0.1093 | 0.9642           | 0.6401     |
| $R \to L$         | -0.2470 | 0.0602  | 0.5200  | 0.6639 | 0.1887  | 0.3912  | 0.1839 | 0.1727 | 0.0145           | 0.0921     |
| $L \rightarrow c$ | -0.0939 | -0.4101 | 0.3608  | 0.6276 | 0.0917  | 0.0081  | 0.1492 | 0.2269 | 0.4381           | 0.5879     |
| L→r               | -0.0628 | -0.0315 | 0.6950  | 0.3115 | 0.1031  | 0.0614  | 0.1975 | 0.0875 | 0.7083           | 0.2622     |
| $L \to R$         | -0.0386 | -0.4888 | 0.5586  | 0.2455 | 0.0988  | -0.0430 | 0.1749 | 0.1946 | 0.0416           | 0.0194     |

\* Kolmogorov-Smirnov test

~ The null hypothesis is that the long- and short-allele are from the same continuous distribution

<sup>+</sup> The null hypothesis is that the long- and short-allele are independent random samples from normal distributions with equal means and unknown variances.

^ Averaged over 2000 permutations



#### Outline





#### Conclusion

- We have observed a positive BOLD response in the rACC and left amygdala during processing of negative emotion in individuals who carry short-allele carriers. Whereas longallele individuals produce a negative BOLD signal in the very same regions.
- Model 1 is the best model for long-allele and model 7 is the best model for short-allele.
- Due to the fact that short-allele is associated with less serotonin transporter, reuptake 5-HT from the synapse would be less, presumably resulting in more serotonin signaling. In other words, they respond as they were hyposerotonergic.



#### **Selected Publications**

- Stephan, K. E., Harrison, L. M., Kiebel, S. J. and David, O.,
  Analyzing effective connectivity with functional magnetic resonance imaging
  John Wiley & Sons, Cogn Sci, 1(3), 446–459 (2010)
- Kobiella, A., Reimold, M., Ulshofer, D. E., Ikonomidou, V. N., Vollmert, C., Vollstadt-Klein, C., Rietschel, M., Reischl, G., Heinz, A. and Smolka, M.,
   How the serotonin transporter 5-HTTLPR polymorphism influences amygdala function: the roles of in vivo serotonin transporter expression and amygdala structure Neuropharmacology, 59(6), 518-526 (2010)
- Beevers, C. G., Gibb, B. E., McGeary, J. E. and Miller, I. W., Serotonin Transporter Genetic Variation and Biased Attention for Emotional Word Stimuli Among Psychiatric Inpatients NeuroImage 116(1), 208–212(2007).
- Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A. and Friston, K. J., Comparing hemodynamic models with DCM NeuroImage 38(3), 387-401 (2007).
- Friston, K. J.,

**Bayesian Estimation of Dynamical Systems: An Application to fMRI** *NeuroImage 16(2), 513–530 (2002)* 



# **Thank You!**

## smhadi@oakland.edu Hadi.shamil@IEEE.com