Dynamic Causal Modeling
(DCM): Theory & Application

Shamil Hadi
Computer Science and Engineering
Oakland University



Oakland

UNNERSITY

SPIE Conference (2012

We have received an
Honorable Mention
Poster Award

480 posters
Winning poster rate:
5/480is 1%




SPIE Conference (2012

Oakland

LUNNERSITY

Biomedical Applications in Molecular, Structural,
and Functional Imaging Conference 8317

Honorable Mention Poster Award

Comparison between subjects with long- and short-allele carriers in the BOLD
signal within amygdala during emotional tasks (8317-61)

Shamil M. Hadi, Mohamad R. Siadat, Oakland Univ. (United States); Abbas Babajani-Feremi,
Henry Ford Hospital (United States); Barbara Oakley, Oakland Univ. (United States)

Presented by:

Robert C. Molthen, Zablocki VA Medical Ctr. (USA), and
John B. Weaver, Dartmouth Hitchcock Medical Ctr. (USA)

G429
Medical Imaging 2012
Monday, 6 February 2012
SP'E SP'E ‘.":‘.”"l
Medlical Imaging




Oakland

Outline

@ / e Functional Integration
~

i

e

@ Dynamic system
=) cperimer
) Concuion




Oakland

UNNERSITY

Functional integration

- Functional connectivity vs. Effective connectivity

Analysis of regionally specific effect.
Correlation between activity in
spatially remote region.
Independent of how the.
dependencies are caused.
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Interactions among brain regions.
One brain area is influenced by |
another.

Requires a generative model of
measured brain responses.
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Objective

1. Determination of facial expression of emotional task is
associated with changes in brain connectivity and thus
allowed comparison between s - allele and €/€ - allele.

2. To see whether these effects were modulated by
emotional stimuli.

3. To show that genotype affects patterns of neuronal
activation within limbic circuitry.

Why individuals with 5-HTTLPR short-allele
are more prone to anxiety?
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Hemodynamic Model

) LI @ stimulus functions
\ o 3 D e+ Cu -
- Activity x(t) % (435 ] neural state equation
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BOLD signal
y(t) = A(V ! q) l BOLD signal
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http://www.fil.ion.ucl.ac.uk/spm/doc/papers/Stephan Neurolmage 38 387 2007.pdf
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fMRI
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Temporal series
fMRI
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voxel time course
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Dynamic Causal Modeling (DCM)

* Dynamic Causal Modelling is a framework for
fitting differential equation models of
neuronal activity to brain imaging data using
Bayesian inference (W. Penny et al, 2010).

* The general idea is to estimate the parameters
of a reasonably realistic neuronal model.

12



Oakland

LUNNERSITY

Model Space

Model Space

Model Model
structure parameters



Conceptual overview
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Neurodynamics : 2 nodes + u,
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activity in z, is coupled to z, via coefficient a,, .
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Neurodynamics : 2 nodes + u, + u,
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modulatory input u, activity through the coupling a,, 17
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Reciprocal connections
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reciprocal connection
_> .
disclosed by u,
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Hemodynamic responses
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h(u,8) represents the BOLD response (balloon model) to input

Blue: neuronal activity
Red: bold responses
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DCM drawback

1- Needs certain special knowledge.

2- Time consuming.

3- Complicated.
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The DCM cycle

Hypothesis about
a neural system

Statistical test Definition of
on parameters DCMs as system
of optimal model models

Bayesian model Design a study that
selection of allows to investigate
optimal DCM that system

Parameter estimation
for all DCMs considered

Data acquisition

Extraction of
time series

21
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Linear model
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Subjects

e 37 Caucasian subjects, 15 for long-allele and 22
for short-allele carriers.

e Subjects were selected from a large population
after testing to make sure there was no history
of neurological illness, any drug or alcohol
abuse.
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Subjects

1- Short promoter region, s-allele

Promoter region Translator region

2- Long promoter region, €/€-allele

Promoter region Translator region
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Region of interest

1. Left amygdala (L).

2. Right amygdala (R).

3. Rostral Subgenual Posterior Portion of the
Anterior Cingular Cortex (r).

4. Caudal Supragenual Portion of the Anterior
Cingular Cortex (c).
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Region of interest

Fig. 3. Brain region locations. a) axial, b) coronal, and c) sagittal

Table 1, Voxel

statistics
Left amygdala (L) 11 -26 -4 -25
Right amygdala (R) 13 22 0 -25
cACC (c) 14 -4 38 21
rACC (r) 11 4 41 5

31



Oakland

UNNERSITY

ldentify the models

v h% P %, : u(®)

c: cACC

r-rACC >
R: Right amygdala
L: Leftamygdala .
— |ntrinsic connection
fffffff > Driving input

-
'

32




Oakland

UNNERSITY

Inputs

ANGRY AFRAID

" Match Shape | Match Face " Labeled Face |

33




e MS e MS e MS

o LF

e MS
o LF

e MS
e MF
e MS
* MF
e MS

Paradigms

e MF
e MS
e MF
e MS
e LF

e MS
o LF

e MS

MF
MS
MF
MS
MF
MS
MF
MS

Oakland

LUNNERSITY

34



I

= oatand
[

= Paradigms

=

— LF MS MF

=

] LM
= paradigm
1

=

] MF MS LF LF ms  1Ime
[

I

[

[ ML
= paradigm
I

I

= MF MF MF MS Time
I

MM
paradigm

Time 3°



[

=

— Quldane

- °

= Results (Input is MF)

=

I x10* Induced Signal A0 BOLD Response

- T T T T T T 35 T T T T T T

= —— ACC, L type I —— 1ACC, Ltype

I il ——ACC, Stype 3l {4 ——1ACC, Stype |

— / [

] \

- \ 25 ! \

L] ! j \

| B . 2

[ n ‘ m f \

] 2 g \

= 5 \ 2 15f f/ \

[ % 2 } g \

] : \ g1 /

O 2l f \

I 1 1 \

O \ 05/

] \ / \

[ | 0r o ] 0k \

I e R

| et

-10 b 10 15 20 25 30 3 -U'EU 5 10 15 20 25 30 3

Time (second) Time (second)

36



Mormalized flow signal
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Results (Modulatory input)

U(2)

Model 3

Model 5 Model 6 Model 7 Model 8
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Results (Winning model)

Bayesian Model Seleclion Bayesian Model Selection Bayesian Model Selection
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Results (Winning model)
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= Endogenous Minimum Maximum Mean SD KS* test t test

- parameters Long Short Long Short Long Short Long Short p-value™ p-valuet, A

B cor -0.0692 -0.0832 0.2845 0.1041 0.0252 0.0215 0.0926 0.0518 0.2463 0.3161

= c—>R -0.1607 -0.1097 0.7273 0.5554 0.0911 0.1092 0.2240 0.1844 0.1249 0.4946

| c—>L -0.0454 -0.3084 0.2348 0.3315 0.0427 0.0208 0.0759 0.1411 0.3404 0.3333

[ ] r—c -0.3102 -0.5189 0.2091 0.6849 -0.0018 0.1002 0.1406 0.2806 0.1822 0.8039

] r—>R -0.1236 -0.1769 0.1808 0.2532 0.0379 0.0529 0.0874 0.0919 0.8862 0.7480

- r—L -0.2824 -0.4271 0.6339 0.7046 0.0940 -0.0398 0.2527 0.2822 0.4380 0.5057

i R—>c -0.3252 -0.4355 0.4170 0.4539 0.0694 -0.0049 0.2331 0.2768 0.5687 0.7275

[ | R—>r -0.0783 -0.1333 0.3976 0.3180 0.0705 0.0669 0.1232 0.1093 0.9642 0.6401

[ ] R—>L -0.2470 0.0602 0.5200 0.6639 0.1887 0.3912 0.1839 0.1727 0.0145 0.0921

- L>c -0.0939 -0.4101 0.3608 0.6276 0.0917 0.0081 0.1492 0.2269 0.4381 0.5879

= L—>r -0.0628 -0.0315 0.6950 0.3115 0.1031 0.0614 0.1975 0.0875 0.7083 0.2622

I L—>R -0.0386 -0.4888 0.5586 0.2455 0.0988 -0.0430 0.1749 0.1946 0.0416 0.0194

B * Kolmogorov-Smirnov test

B ~ The null hypothesis is that the long- and short-allele are from the same continuous distribution

| t The null hypothesis is that the long- and short-allele are independent random samples from normal distributions with equal means and

unknown variances.
A Averaged over 2000 permutations 41
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Conclusion

* We have observed a positive BOLD response in the rACC
and left amygdala during processing of negative emotion in
individuals who carry short-allele carriers. Whereas long-
allele individuals produce a negative BOLD signal in the very
same regions.

* Model 1 is the best model for long-allele and model 7 is the
best model for short-allele.

* Due to the fact that short-allele is associated with less
serotonin transporter, reuptake 5-HT from the synapse
would be less, presumably resulting in more serotonin
signaling. In other words, they respond as they were
hyposerotonergic .
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